CHAPTER IX

STORMWATER REGULATIONS AND STORMWATER CONTROL

9-1 TITLE AND PURPOSE.

9-1.1 Title. This chapter shall be known as “The Stormwater Regulations and Stormwater Control” of the Borough of Harvey Cedars. (Ord. No. 2006-13 § 1)

9-1.2 Purpose. This chapter is adopted for the purpose of regulating the municipal separate storm sewer system(s) operated by the Borough of Harvey Cedars so as to protect public health, safety and welfare, and to prescribe penalties for the failure to comply.
9-2 DEFINITIONS.

For the purpose of this ordinance, the following terms, phrases, words, and their derivations shall have the meanings stated herein unless their use in the text of this Chapter clearly demonstrates a different meaning. When not inconsistent with the context, words used in the present tense include the future, words used in the plural number include the singular number, and words used in the singular number include the plural number. The word “shall” is always mandatory and not merely directory. The definitions below are the same as or based on corresponding definitions in the New Jersey Pollutant Discharge Elimination System (NJPDES) rules at NJAC 7:14A-1.2 and in the Stormwater Management Rules at N.J.A.C. 7:8-1.2. (Ord. No. 2010-17 § 2)

CAFRA Planning Map means the geographic depiction of the boundaries for Coastal Planning Areas, CAFRA Centers, CAFRA Cores and CAFRA Nodes pursuant to N.J.A.C. 7:7E-5B.3.

CAFRA Centers, Cores or Nodes means those areas within boundaries accepted by the Department pursuant to N.J.A.C. 7:8E-5B.

Compaction means the increase in soil bulk density.

Core means a pedestrian-oriented area of commercial and civic uses serving the surrounding municipality, generally including housing and access to public transportation.

County review agency means an agency designated by the County Board of Chosen Freeholders to review municipal stormwater management plans and implementing ordinance(s). The county review agency may either be:

A county planning agency; or

A county water resource association created under N.J.S.A 58:16A-55.5, if the ordinance or resolution delegates authority to approve, conditionally approve, or disapprove municipal stormwater management plans and implementing ordinances.

Department means the New Jersey Department of Environmental Protection.

Designated Center means a State Development and Redevelopment Plan Center as designated by the State Planning Commission such as urban, regional, town, village, or hamlet.

Design engineer means a person professionally qualified and duly licensed in New Jersey to perform engineering services that may include, but not necessarily be limited to, development of project requirements, creation and development of project design and preparation of drawings and specifications.

Development means the division of a parcel of land into two or more parcels, the construction, reconstruction, conversion, structural alteration, relocation or enlargement of any building or structure, any mining excavation or landfill, and any use or change in the use
of any building or other structure, or land or extension of use of land, by any person, for which permission is required under the Municipal Land Use Law, N.J.S.A. 40:55D-1 et seq. In the case of development of agricultural lands, development means: any activity that requires a State permit; any activity reviewed by the County Agricultural Board (CAB) and the State Agricultural Development Committee (SADC), and municipal review of any activity not exempted by the Right to Farm Act, N.J.S.A 4:1C-1 et seq.

Domestic sewage – waste and wastewater from humans or household operations.

Drainage area means a geographic area within which stormwater, sediments, or dissolved materials drain to a particular receiving waterbody or to a particular point along a receiving waterbody.

Environmentally critical areas means an area or feature which is of significant environmental value, including but not limited to: stream corridors; natural heritage priority sites; habitat of endangered or threatened species; large areas of contiguous open space or upland forest; steep slopes; and well head protection and groundwater recharge areas. Habitats of endangered or threatened species are identified using the Department’s Landscape Project as approved by the Department’s Endangered and Nongame Species Program.

Empowerment Neighborhood means a neighborhood designated by the Urban Coordinating Council “in consultation and conjunction with” the New Jersey Redevelopment Authority pursuant to N.J.S.A 55:19-69.

Erosion means the detachment and movement of soil or rock fragments by water, wind, ice or gravity.

Illicit connection – any physical or non-physical connection that discharges domestic sewage, non-contact cooling water, process wastewater, or other industrial waste (other than stormwater) to the municipal separate storm sewer system operated by the Borough of Harvey Cedars, unless that discharge is authorized under a NJPDES permit other than the Tier A Municipal Stormwater General Permit (NJPDES Permit Number NJ0141852). Non-physical connections may include, but are not limited to, leaks, flows, or overflows into the municipal separate storm sewer system.

Impervious surface means a surface that has been covered with a layer of material so that it is highly resistant to infiltration by water.

Industrial waste – non-domestic waste, including, but not limited to, those pollutants regulated under Section 307(a), (b), or (c) of the Federal Clean Water Act (33 U.S.C. § 1317(a), (b), or (c)).

Infiltration is the process by which water seeps into the soil from precipitation.

Major development means any “development” that provides for ultimately disturbing one or more acres of land or regardless of area of land disturbance requires an approval from the Borough Board of Adjustment or Borough Planning Board for a minor or major subdivision or site plan. Disturbance for the purpose of this rule is the placement of impervious surface or exposure and/or movement of soil or bedrock or clearing, cutting, or removing of vegetation.
Minor Development means any development that is not a major development including all residential construction on individual lots. (Ord. No. 2017-03 § 1)

Mitigation means an action by an applicant providing compensation or offset actions for onsite stormwater management requirements where the applicant has demonstrated the inability or impracticality of strict compliance with the stormwater management requirements set forth in NJAC 7:8, in an adopted regional stormwater management plan, or in this local ordinance, and has received a waiver from strict compliance from the municipality. Mitigation, for the purposes of this ordinance, includes both the mitigation plan detailing how the project’s failure to strictly comply will be compensated, and the implementation of the approved mitigation plan within the same HUC-14 within which the subject project is proposed (if possible and practical), or a contribution of funding toward a regional stormwater control project, or provision for equivalent treatment at an alternate location, or other equivalent water quality benefit.

Municipal separate storm sewer system (MS4) – a conveyance or system of conveyances (including roads with drainage systems, municipal streets, catch basins, curbs, gutters, ditches, manmade channels, or storm drains) that is owned or operated by the Borough of Harvey Cedars or other public body, and is designed and used for collecting and conveying stormwater.

Municipality means any city, borough, town, township, or village.

NJPDES permit – a permit issued by the New Jersey Department of Environmental Protection to implement the New Jersey Pollutant Discharge Elimination System (NJPDES) rules at N.J.A.C. 7:14A.

Node means an area designated by the State Planning Commission concentrating facilities and activities which are not organized in a compact form.

Non-contact cooling water – water used to reduce temperature for the purpose of cooling. Such waters do not come into direct contact with any raw material, intermediate product (other than heat) or finished product. Non-contact cooling water may however contain algaecides, or biocides to control fouling of equipment such as heat exchangers, and/or corrosion inhibitors.

Nutrient means a chemical element or compound, such as nitrogen or phosphorus, which is essential to and promotes the development of organisms.

Person – any individual, corporation, company, partnership, firm, association, or political subdivision of this State subject to municipal jurisdiction.

Person means any individual, corporation, company, partnership, firm, association, Borough of Harvey Cedars, or political subdivision of this State subject to municipal jurisdiction pursuant to the Municipal Land Use Law, N.J.S.A. 40:55D-1 et seq.

Pollutant means any dredged spoil, solid waste, incinerator residue, filter backwash, sewage, garbage, refuse, oil, grease, sewage sludge, munitions, chemical wastes, biological materials, medical wastes, radioactive substance (except those regulated under the Atomic Energy Act of 1954, as amended (42 U.S.C. 2011 et seq.), thermal waste, wrecked or discarded equipment, rock, sand, cellar dirt, industrial, municipal, agricultural, and construction waste.
or runoff, or other residue discharged directly or indirectly to the land, ground waters or surface waters of the State, or to a domestic treatment works. “Pollutant” includes both hazardous and nonhazardous pollutants.

Process wastewater – any water which, during manufacturing or processing, comes into direct contact with or results from the production or use of any raw material, intermediate product, finished product, byproduct, or waste product. Process wastewater includes, but is not limited to, leachate and cooling water other than non-contact cooling water.

Recharge means the amount of water from precipitation that infiltrates into the ground and is not evapotranspired.

Refuse container – any waste container that a person controls whether owned, leased, or operated, including dumpsters, trash cans, garbage pails, and plastic trash bags. (Ord. No. 2010-17 § 3)

Sediment means solid material, mineral or organic, that is in suspension, is being transported, or has been moved from its site of origin by air, water or gravity as a product of erosion.

Site means the lot or lots upon which a major development is to occur or has occurred.

Soil means all unconsolidated mineral and organic material of any origin.

State Development and Redevelopment Plan Metropolitan Planning Area (PA1) means an area delineated on the State Plan Policy Map and adopted by the State Planning Commission that is intended to be the focus for much of the state’s future redevelopment and revitalization efforts.

State Plan Policy Map is defined as the geographic application of the State Development and Redevelopment Plan’s goals and statewide policies, and the official map of these goals and policies.

Storm drain inlet – an opening in a storm drain used to collect stormwater runoff and includes, but is not limited to, a grate inlet, curb-opening inlet, slotted inlet, and combination inlet. (Ord. No. 2010-17 § 3)

Stormwater – water resulting from precipitation (including rain and snow) that runs off the land’s surface, is transmitted to the subsurface, is captured by separate storm sewers or other sewerage or drainage facilities, or is conveyed by snow removal equipment.

Stormwater means water resulting from precipitation (including rain and snow) that runs off the land’s surface, is transmitted to the subsurface, or is captured by separate storm sewers or other sewage or drainage facilities, or conveyed by snow removal equipment.

Stormwater runoff means water flow on the surface of the ground or in storm sewers, resulting from precipitation.
Stormwater management basin means an excavation or embankment and related areas designed to retain stormwater runoff. A stormwater management basin may either be normally dry (that is, a detention basin or infiltration basin), retain water in a permanent pool (a retention basin), or be planted mainly with wetland vegetation (most constructed stormwater wetlands).

Stormwater management measure means any structural or nonstructural strategy, practice, technology, process, program, or other method intended to control or reduce stormwater runoff and associated pollutants, or to induce or control the infiltration or groundwater recharge of stormwater or to eliminate illicit or illegal non-stormwater discharges into stormwater conveyances.

Tidal Flood Hazard Area means a flood hazard area, which may be influenced by stormwater runoff from inland areas, but which is primarily caused by the Atlantic Ocean.

Urban Coordinating Council Empowerment Neighborhood means a neighborhood given priority access to State resources through the New Jersey Redevelopment Authority.

Urban Enterprise Zones means a zone designated by the New Jersey Enterprise Zone Authority pursuant to the New Jersey Urban Enterprise Zones Act, N.J.S.A. 52:27H-60 et. seq.

Urban Redevelopment Area is defined as previously developed portions of areas:

1. Delineated on the State Plan Policy Map (SPPM) as the Metropolitan Planning Area (PA1), Designated Centers, Cores or Nodes;
2. Designated as CAFRA Centers, Cores or Nodes;
3. Designated as Urban Enterprise Zones; and

Waters of the State means the ocean and its estuaries, all springs, streams, wetlands, and bodies of surface or ground water, whether natural or artificial, within the boundaries of the State of New Jersey or subject to its jurisdiction.

Wetlands or wetland means an area that is inundated or saturated by surface water or ground water at a frequency and duration sufficient to support, and that under normal circumstances does support, a prevalence of vegetation typically adapted for life in saturated soil conditions, commonly known as hydrophytic vegetation.
9-3 ILLICIT CONNECTIONS.

No person shall discharge or cause to be discharged through an illicit connection to the municipal separate storm sewer system operated by the Borough of Harvey Cedars any domestic sewage, non-contact cooling water, process wastewater, or other industrial waste (other than stormwater).
9-4 IMPROPER DISPOSAL OF WASTE.

9-4.1 The spilling, dumping, or disposal of materials other than stormwater to the municipal separate storm sewer system operated by the Borough of Harvey Cedars is prohibited. The spilling, dumping, or disposal of materials other than stormwater in such a manner as to cause the discharge of pollutants to the municipal separate storm sewer system is also prohibited.

9-4.2 Exceptions to Prohibition.

a. Water line flushing and discharges from potable water sources.

b. Uncontaminated ground water (e.g., infiltration, crawl space or basement sump pumps, foundation or footing drains, rising ground waters)

c. Air conditioning condensate (excluding contact and non-contact cooling water).

d. Irrigation water (including landscape and lawn watering runoff).

e. Flows from springs, riparian habitats and wetlands, water reservoir discharges and diverted stream flows.

f. Residential car washing water, and residential swimming pool discharges.

g. Sidewalk, driveway and street wash water.

h. Flows from fire fighting activities.

i. Flows from rinsing of the following equipment with clean water:
 • Beach maintenance equipment immediately following their use for their intended purposes; and
 • Equipment used in the application of salt and de-icing materials immediately following salt and de-icing material applications. Prior to rinsing with clean water, all residual salt and de-icing materials must be removed from equipment and vehicles to the maximum extent practicable using dry cleaning methods (e.g., shoveling and sweeping). Recovered materials are to be returned to storage for reuse or properly discarded.

Rinsing of equipment, as noted in the above situation is limited to exterior, undercarriage, and exposed parts and does not apply to engines or other enclosed machinery.
9-5 WILDLIFE FEEDING.

Refer to section 3-6.

9-6 CONTAINERIZED YARD WASTE.

Refer to Section 18-4.c.
(Ord. No. 2010-17 § 4)

9-7 LITTER CONTROL.

Refer to section 3-1.

9-8 PET WASTE.

Refer to section 6-3.

9-9 ENFORCEMENT.

This ordinance shall be enforced by the Harvey Cedars Police Department.

(Ord. No. 2006-01 § 1)
9-10 STORMWATER CONTROL

9-10.1 Policy Statement

Flood control, groundwater recharge, and pollutant reduction through nonstructural or low impact techniques shall be explored before relying on structural Best Management Practices (BMPs). Structural BMPs should be integrated with nonstructural stormwater management strategies and proper maintenance plans. Nonstructural strategies include both environmentally sensitive site design and source controls that prevent pollutants from being placed on the site or from being exposed to stormwater. Source control plans should be developed based upon physical site conditions and the origin, nature, and the anticipated quantity or amount of potential pollutants. Multiple stormwater management BMPs may be necessary to achieve the established performance standards for water quality, quantity, and groundwater recharge.

9-10.2 Purpose

It is the purpose of this ordinance to establish minimum stormwater management requirements and controls for “major development,” as defined in Section 9-10.5.

9-10.3 Applicability

A. This ordinance shall be applicable to all site plans and subdivisions for the following major developments that require preliminary or final site plan or subdivision review:
 5. Non-residential major developments; and
 5. Aspects of residential major developments that are not pre-empted by the Residential Site Improvement Standards at N.J.A.C. 5:21.

B. This ordinance shall also be applicable to all major developments undertaken by The Borough of Harvey Cedars.

9-10.4 Compatibility with Other Permit and Ordinance Requirements

Development approvals issued for subdivisions and site plans pursuant to this ordinance are to be considered an integral part of development approvals under the subdivision and site plan review process and do not relieve the applicant of the responsibility to secure required permits or approvals for activities regulated by any other applicable code, rule, act, or ordinance. In their interpretation and application, the provisions of this ordinance shall be held to be the minimum requirements for the promotion of the public health, safety, and general welfare. This ordinance is not intended to interfere with, abrogate, or annul any other ordinances, rule or regulation, statute, or other provision of law except that, where any provision of this ordinance imposes restrictions different from those imposed by any other ordinance, rule or regulation, or other provision of law, the more restrictive provisions or higher standards shall control.

9-10.5 Reserved.

(Ord. No. 2010-17 § 1)
9-10.6 General Standards

A. Design and Performance Standards for Stormwater Management Measures

1. Stormwater management measures for major development shall be developed to meet the erosion control, groundwater recharge, stormwater runoff quantity, and stormwater runoff quality standards in Section 9-10.7. To the maximum extent practicable, these standards shall be met by incorporating nonstructural stormwater management strategies into the design. If these strategies alone are not sufficient to meet these standards, structural stormwater management measures necessary to meet these standards shall be incorporated into the design.

2. The standards in this ordinance apply only to new major development and are intended to minimize the impact of stormwater runoff on water quality and water quantity in receiving water bodies and maintain groundwater recharge. The standards do not apply to new major development to the extent that alternative design and performance standards are applicable under a regional stormwater management plan or Water Quality Management Plan adopted in accordance with Department rules.

 Note: Alternative standards shall provide at least as much protection from stormwater-related loss of groundwater recharge, stormwater quantity and water quality impacts of major development projects as would be provided under the standards in N.J.A.C. 7:8-5.

9-10.7 Stormwater Management Requirements for Major Development

A. The development shall incorporate a maintenance plan for the stormwater management measures incorporated into the design of a major development in accordance with Section 9-10.13 “Maintenance and Repair”.

B. Stormwater management measures shall avoid adverse impacts of concentrated flow on habitat for threatened and endangered species including “swamp pink” and “bog turtle” as documented in the Department’s Landscape Project or Natural Heritage Database established under N.J.S.A. 13:1B-15.147 through 15.150.

(Ord. No. 2007-03 § 1)

C. The following linear development projects are exempt from the groundwater recharge, stormwater runoff quantity, and stormwater runoff quality requirements of subsections F and G below:

 1. The construction of an underground utility line provided that the disturbed areas are revegetated upon completion;

 2. The construction of an aboveground utility line provided that the existing conditions are maintained to the maximum extent practicable; and

 3. The construction of a public pedestrian access, such as a sidewalk or trail with a maximum width of 14 feet, provided that the access is made of permeable material.
D. A waiver from strict compliance from the groundwater recharge, stormwater runoff
quantity, and stormwater runoff quality requirements of subsections F and G below
may be obtained for the enlargement of an existing public roadway; or the
construction or enlargement of a public pedestrian access, provided that the following
conditions are met:

1. The applicant demonstrates that there is a public need for the project that cannot
be accomplished by any other means;

2. The applicant demonstrates through an alternatives analysis, that through the use
of nonstructural and structural stormwater management strategies and measures,
the option selected complies with the requirements of subsections F and G below
to the maximum extent practicable;

3. The applicant demonstrates that, in order to meet the requirements of subsections
F and G below, existing structures currently in use, such as homes and buildings,
would need to be condemned; and

4. The applicant demonstrates that it does not own or have other rights to areas,
including the potential to obtain through condemnation lands not falling under
D.3 above within the upstream drainage area of the receiving stream, that would
provide additional opportunities to mitigate the requirements of subsections F and
G below that were not achievable on-site.

E. Nonstructural Stormwater Management Strategies

1. To the maximum extent practicable, the standards in subsections F and G below
shall be met by incorporating nonstructural stormwater management strategies set
forth at subsection E into the design. The applicant shall identify the nonstructural
measures incorporated into the design of the project. If the applicant contends that
it is not feasible for engineering, environmental, or safety reasons to incorporate
any nonstructural stormwater management measures identified in Paragraph 2
below into the design of a particular project, the applicant shall identify the
strategy considered and provide a basis for the contention.

2. Nonstructural stormwater management strategies incorporated into site design
shall:

 a. Protect areas that provide water quality benefits or areas particularly
 susceptible to erosion and sediment loss;

 b. Minimize impervious surfaces and break up or disconnect the flow of runoff
 over impervious surfaces;

 c. Maximize the protection of natural drainage features and vegetation;
d. Minimize the decrease in the "time of concentration" from pre-construction to post construction. "Time of concentration" is defined as the time it takes for runoff to travel from the hydraulically most distant point of the watershed to the point of interest within a watershed;

e. Minimize land disturbance including clearing and grading;

f. Minimize soil compaction;

g. Provide low-maintenance landscaping that encourages retention and planting of native vegetation and minimizes the use of lawns, fertilizers and pesticides;

h. Provide vegetated open-channel conveyance systems discharging into and through stable vegetated areas;

i. Provide other source controls to prevent or minimize the use or exposure of pollutants at the site, in order to prevent or minimize the release of those pollutants into stormwater runoff. Such source controls include, but are not limited to:

 (1) Site design features that help to prevent accumulation of trash and debris in drainage systems, including features that satisfy Section 4.E.3. below;

 (2) Site design features that help to prevent discharge of trash and debris from drainage systems;

 (3) Site design features that help to prevent and/or contain spills or other harmful accumulations of pollutants at industrial or commercial developments; and

 (4) When establishing vegetation after land disturbance, applying fertilizer in accordance with the requirements established under the Soil Erosion and Sediment Control Act, N.J.S.A. 4:24-39 et seq., and implementing rules.

3. Site design features identified under Section 9-10.7.E.2.i.(2) above shall comply with the following standard to control passage of solid and floatable materials through storm drain inlets. For purposes of this paragraph, “solid and floatable materials” means sediment, debris, trash, and other floating, suspended, or settleable solids. For exemptions to this standard see subsection c. below.

 a. Design engineers shall use either of the following grates whenever they use a grate in pavement or another ground surface to collect stormwater from that surface into a storm drain or surface water body under that grate:

 (1) The New Jersey Department of Transportation (NJDOT) bicycle safe grate, which is described in Chapter 2.4 of the NJDOT Bicycle Compatible Roadways and Bikeways Planning and Design Guidelines (April 1996); or
(2) A different grate, if each individual clear space in that grate has an area of no more than seven (7.0) square inches, or is no greater than 0.5 inches across the smallest dimension.

Examples of grates subject to this standard include grates in grate inlets, the grate portion (non-curb-opening portion) of combination inlets, grates on storm sewer manholes, ditch grates, trench grates, and grates of spacer bars in slotted drains. Examples of ground surfaces include surfaces of roads (including bridges), driveways, parking areas, bikeways, plazas, sidewalks, lawns, fields, open channels, and stormwater basin floors.

b. Whenever design engineers use a curb-opening inlet, the clear space in that curb opening (or each individual clear space, if the curb opening has two or more clear spaces) shall have an area of no more than seven (7.0) square inches, or be no greater than two (2.0) inches across the smallest dimension.

c. This standard does not apply:

(1) Where the review agency determines that this standard would cause inadequate hydraulic performance that could not practically be overcome by using additional or larger storm drain inlets that meet these standards;

(2) Where flows from the water quality design storm as specified in Section 19-10.7.G.1 are conveyed through any device (e.g., end of pipe netting facility, manufactured treatment device, or a catch basin hood) that is designed, at a minimum, to prevent delivery of all solid and floatable materials that could not pass through one of the following:

(a) A rectangular space four and five-eighths inches long and one and one-half inches wide (this option does not apply for outfall netting facilities); or

(b) A bar screen having a bar spacing of 0.5 inches.

(3) Where flows are conveyed through a trash rack that has parallel bars with one-inch (1") spacing between the bars, to the elevation of the water quality design storm as specified in Section 9-10.7.G.1; or

(4) Where the New Jersey Department of Environmental Protection determines, pursuant to the New Jersey Register of Historic Places Rules at N.J.A.C. 7:4-7.2(c), that action to meet this standard is an undertaking that constitutes an encroachment or will damage or destroy the New Jersey Register listed historic property.

4. Any land area used as a nonstructural stormwater management measure to meet the performance standards in subsections F and G shall be dedicated to a government agency, subjected to a conservation restriction filed with the appropriate County Clerk’s office, or subject to an approved equivalent restriction that ensures that measure or an equivalent stormwater management measure approved by the reviewing agency is maintained in perpetuity.
5. Guidance for nonstructural stormwater management strategies is available in the New Jersey Stormwater Best Management Practices Manual. The BMP Manual may be obtained from the address identified in Section 9-10.10, or found on the Department’s website at www.njstormwater.org.

F. Erosion Control, Groundwater Recharge and Runoff Quantity Standards

1. This subsection contains minimum design and performance standards to control erosion, encourage and control infiltration and groundwater recharge, and control stormwater runoff quantity impacts of major development.

a. The minimum design and performance standards for erosion control are those established under the Soil Erosion and Sediment Control Act, N.J.S.A. 4:24-39 et seq. and implementing rules.

b. The minimum design and performance standards for groundwater recharge are as follows:

 (1) The design engineer shall, using the assumptions and factors for stormwater runoff and groundwater recharge calculations at Section 9-10.8, either:

 (a) Demonstrate through hydrologic and hydraulic analysis that the site and its stormwater management measures maintain 100 percent of the average annual pre-construction groundwater recharge volume for the site; or

 (b) Demonstrate through hydrologic and hydraulic analysis that the increase of stormwater runoff volume from pre-construction to post-construction for the 2-year storm is infiltrated.

 (2) This groundwater recharge requirement does not apply to projects within the “urban redevelopment area,” or to projects subject to (3) below.

 (3) The following types of stormwater shall not be recharged:

 (a) Stormwater from areas of high pollutant loading. High pollutant loading areas are areas in industrial and commercial developments where solvents and/or petroleum products are loaded/unloaded, stored, or applied, areas where pesticides are loaded/unloaded or stored; areas where hazardous materials are expected to be present in greater than “reportable quantities” as defined by the United States Environmental Protection Agency (EPA) at 40 CFR 302.4; areas where recharge would be inconsistent with Department approved remedial action work plan or landfill closure plan and areas with high risks for spills of toxic materials, such as gas stations and vehicle maintenance facilities; and

 (b) Industrial stormwater exposed to “source material.” “Source material” means any material(s) or machinery, located at an industrial facility, that is directly or indirectly related to process, manufacturing or other
industrial activities, which could be a source of pollutants in any industrial stormwater discharge to groundwater. Source materials include, but are not limited to, raw materials; intermediate products; final products; waste materials; by-products; industrial machinery and fuels, and lubricants, solvents, and detergents that are related to process, manufacturing, or other industrial activities that are exposed to stormwater.

(4) The design engineer shall assess the hydraulic impact on the groundwater table and design the site so as to avoid adverse hydraulic impacts. Potential adverse hydraulic impacts include, but are not limited to, exacerbating a naturally or seasonally high water table so as to cause surficial ponding, flooding of basements, or interference with the proper operation of subsurface sewage disposal systems and other subsurface structures in the vicinity or downgradient of the groundwater recharge area.

c. In order to control stormwater runoff quantity impacts, the design engineer shall, using the assumptions and factors for stormwater runoff calculations at subsection 9-10.8, complete one of the following:

(1) Demonstrate through hydrologic and hydraulic analysis that for stormwater leaving the site, post-construction runoff hydrographs for the two, 10, and 100-year storm events do not exceed, at any point in time, the pre-construction runoff hydrographs for the same storm events;

(2) Demonstrate through hydrologic and hydraulic analysis that there is no increase, as compared to the pre-construction condition, in the peak runoff rates of stormwater leaving the site for the two, 10, and 100-year storm events and that the increased volume or change in timing of stormwater runoff will not increase flood damage at or downstream of the site. This analysis shall include the analysis of impacts of existing land uses and projected land uses assuming full development under existing zoning and land use ordinances in the drainage area;

(3) Design stormwater management measures so that the post-construction peak runoff rates for the 2, 10 and 100 year storm events are 50, 75 and 80 percent, respectively, of the pre-construction peak runoff rates. The percentages apply only to the post-construction stormwater runoff that is attributable to the portion of the site on which the proposed development or project is to be constructed. The percentages shall not be applied to post-construction stormwater runoff into tidal flood hazard areas if the increased volume of stormwater runoff will not increase flood damages below the point of discharge; or

(4) In tidal flood hazard areas, stormwater runoff quantity analysis in accordance with (1), (2) and (3) above shall only be applied if the increased volume of stormwater runoff could increase flood damages below the point of discharge.
G. Stormwater Runoff Quality Standards

1. Stormwater management measures shall be designed to reduce the post-construction load of total suspended solids (TSS) in stormwater runoff by 80 percent of the anticipated load from the developed site, expressed as an annual average. Stormwater management measures shall only be required for water quality control if an additional 1/4 acre of impervious surface is being proposed on a development site. The requirement to reduce TSS does not apply to any stormwater runoff in a discharge regulated under a numeric effluent limitation for TSS imposed under the New Jersey Pollution Discharge Elimination System (NJPDES) rules, N.J.A.C. 7:14A, or in a discharge specifically exempt under a NJPDES permit from this requirement. The water quality design storm is 1.25 inches of rainfall in two hours. Water quality calculations shall take into account the distribution of rain from the water quality design storm, as reflected in Table 1. The calculation of the volume of runoff may take into account the implementation of non-structural and structural stormwater management measures.

<table>
<thead>
<tr>
<th>Time (Minutes)</th>
<th>Cumulative Rainfall (Inches)</th>
<th>Time (Minutes)</th>
<th>Cumulative Rainfall (Inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0000</td>
<td>65</td>
<td>0.8917</td>
</tr>
<tr>
<td>5</td>
<td>0.0083</td>
<td>70</td>
<td>0.9917</td>
</tr>
<tr>
<td>10</td>
<td>0.0166</td>
<td>75</td>
<td>1.0500</td>
</tr>
<tr>
<td>15</td>
<td>0.0250</td>
<td>80</td>
<td>1.0840</td>
</tr>
<tr>
<td>20</td>
<td>0.0500</td>
<td>85</td>
<td>1.1170</td>
</tr>
<tr>
<td>25</td>
<td>0.0750</td>
<td>90</td>
<td>1.1500</td>
</tr>
<tr>
<td>30</td>
<td>0.1000</td>
<td>95</td>
<td>1.1750</td>
</tr>
<tr>
<td>35</td>
<td>0.1330</td>
<td>100</td>
<td>1.2000</td>
</tr>
<tr>
<td>40</td>
<td>0.1660</td>
<td>105</td>
<td>1.2250</td>
</tr>
<tr>
<td>45</td>
<td>0.2000</td>
<td>110</td>
<td>1.2334</td>
</tr>
<tr>
<td>50</td>
<td>0.2583</td>
<td>115</td>
<td>1.2417</td>
</tr>
<tr>
<td>55</td>
<td>0.3583</td>
<td>120</td>
<td>1.2500</td>
</tr>
<tr>
<td>60</td>
<td>0.6250</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2. For purposes of TSS reduction calculations, Table 2 below presents the presumed removal rates for certain BMPs designed in accordance with the New Jersey Stormwater Best Management Practices Manual. The BMP Manual may be obtained from the address identified in Section 9-10.10, or found on the Department’s website at www.njstormwater.org. The BMP Manual and other sources of technical guidance are listed in Section 9-10.10. TSS reduction shall be calculated based on the removal rates for the BMPs in Table 2 below. Alternative removal rates and methods of calculating removal rates may be used if the design engineer provides documentation demonstrating the capability of these alternative rates and methods to the review agency. A copy of any approved alternative rate or method of calculating the removal rate shall be provided to the Department at the following address: Division of Watershed Management, New Jersey Department of Environmental Protection, PO Box 418 Trenton, New Jersey, 08625-0418.

3. If more than one BMP in series is necessary to achieve the required 80 percent TSS reduction for a site, the applicant shall utilize the following formula to calculate TSS reduction:

\[R = A + B - \frac{AB}{100} \]

Where

- \(R \) = total TSS percent load removal from application of both BMPs, and
- \(A \) = the TSS percent removal rate applicable to the first BMP
- \(B \) = the TSS percent removal rate applicable to the second BMP

<table>
<thead>
<tr>
<th>Best Management Practice</th>
<th>TSS Percent Removal Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bioretention Systems</td>
<td>90</td>
</tr>
<tr>
<td>Constructed Stormwater Wetland</td>
<td>90</td>
</tr>
<tr>
<td>Extended Detention Basin</td>
<td>40-60</td>
</tr>
<tr>
<td>Infiltration Structure</td>
<td>80</td>
</tr>
<tr>
<td>Manufactured Treatment Device</td>
<td>See Section 6.C</td>
</tr>
<tr>
<td>Sand Filter</td>
<td>80</td>
</tr>
<tr>
<td>Vegetative Filter Strip</td>
<td>60-80</td>
</tr>
<tr>
<td>Wet Pond</td>
<td>50-90</td>
</tr>
</tbody>
</table>
4. If there is more than one onsite drainage area, the 80 percent TSS removal rate shall apply to each drainage area, unless the runoff from the subareas converge on site in which case the removal rate can be demonstrated through a calculation using a weighted average.

5. Stormwater management measures shall also be designed to reduce, to the maximum extent feasible, the post-construction nutrient load of the anticipated load from the developed site in stormwater runoff generated from the water quality design storm. In achieving reduction of nutrients to the maximum extent feasible, the design of the site shall include nonstructural strategies and structural measures that optimize nutrient removal while still achieving the performance standards in Sections 9-10.7.F and G.

6. Additional information and examples are contained in the New Jersey Stormwater Best Management Practices Manual, which may be obtained from the address identified in Section 9-10.10.

7. In accordance with the definition of FW1 at N.J.A.C. 7:9B-1.4, stormwater management measures shall be designed to prevent any increase in stormwater runoff to waters classified as FW1.

8. Special water resource protection areas shall be established along all waters designated Category One at N.J.A.C. 7:9B, and perennial or intermittent streams that drain into or upstream of the Category One waters as shown on the USGS Quadrangle Maps or in the County Soil Surveys, within the associated HUC14 drainage area. These areas shall be established for the protection of water quality, aesthetic value, exceptional ecological significance, exceptional recreational significance, exceptional water supply significance, and exceptional fisheries significance of those established Category One waters. These areas shall be designated and protected as follows:

a. The applicant shall preserve and maintain a special water resource protection area in accordance with one of the following:

 (1) A 300-foot special water resource protection area shall be provided on each side of the waterway, measured perpendicular to the waterway from the top of the bank outwards or from the centerline of the waterway where the bank is not defined, consisting of existing vegetation or vegetation allowed to follow natural succession is provided.

 (2) Encroachment within the designated special water resource protection area under Subsection (1) above shall only be allowed where previous development or disturbance has occurred (for example, active agricultural use, parking area or maintained lawn area). The encroachment shall only be allowed where applicant demonstrates that the functional value and overall condition of the special water resource protection area will be maintained to the maximum extent practicable. In no case shall the remaining special water resource protection area be reduced to less than
9-10 STORMWATER REGULATIONS AND STORMWATER CONTROL

150 feet as measured perpendicular to the top of bank of the waterway or centerline of the waterway where the bank is undefined. All encroachments proposed under this subparagraph shall be subject to review and approval by the Department.

b. All stormwater shall be discharged outside of and flow through the special water resource protection area and shall comply with the Standard for Off-Site Stability in the “Standards for Soil Erosion and Sediment Control in New Jersey,” established under the Soil Erosion and Sediment Control Act, N.J.S.A. 4:24-39 et seq.

c. If stormwater discharged outside of and flowing through the special water resource protection area cannot comply with the Standard for Off-Site Stability in the “Standards for Soil Erosion and Sediment Control in New Jersey,” established under the Soil Erosion and Sediment Control Act, N.J.S.A. 4:24-39 et seq., then the stabilization measures in accordance with the requirements of the above standards may be placed within the special water resource protection area, provided that:

(1) Stabilization measures shall not be placed within 150 feet of the Category One waterway;

(2) Stormwater associated with discharges allowed by this section shall achieve a 95 percent TSS post-construction removal rate;

(3) Temperature shall be addressed to ensure no impact on the receiving waterway;

(4) The encroachment shall only be allowed where the applicant demonstrates that the functional value and overall condition of the special water resource protection area will be maintained to the maximum extent practicable;

(5) A conceptual project design meeting shall be held with the appropriate Department staff and Soil Conservation District staff to identify necessary stabilization measures; and

(6) All encroachments proposed under this section shall be subject to review and approval by the Department.

d. Paragraph G.8 does not apply to the construction of one individual single family dwelling that is not part of a larger development on a lot receiving preliminary or final subdivision approval on or before February 2, 2004, provided that the construction begins on or before February 2, 2009.

9-10.8 Calculation of Stormwater Runoff and Groundwater Recharge

A. Stormwater runoff shall be calculated in accordance with the following:

1. The design engineer shall calculate runoff using one of the following methods:
a. The USDA Natural Resources Conservation Service (NRCS) methodology, including the NRCS Runoff Equation and Dimensionless Unit Hydrograph, as described in the NRCS National Engineering Handbook Section 4 – Hydrology and Technical Release 55 – Urban Hydrology for Small Watersheds; or

2. For the purpose of calculating runoff coefficients and groundwater recharge, there is a presumption that the pre-construction condition of a site or portion thereof is a wooded land use with good hydrologic condition. The term “runoff coefficient” applies to both the NRCS methodology at Section 9-10.8.A.1.a and the Rational and Modified Rational Methods at Section 9-10.8.A.1.b. A runoff coefficient or a groundwater recharge land cover for an existing condition may be used on all or a portion of the site if the design engineer verifies that the hydrologic condition has existed on the site or portion of the site for at least five years without interruption prior to the time of application. If more than one land cover have existed on the site during the five years immediately prior to the time of application, the land cover with the lowest runoff potential shall be used for the computations. In addition, there is the presumption that the site is in good hydrologic condition (if the land use type is pasture, lawn, or park), with good cover (if the land use type is woods), or with good hydrologic condition and conservation treatment (if the land use type is cultivation).

3. In computing pre-construction stormwater runoff, the design engineer shall account for all significant land features and structures, such as ponds, wetlands, depressions, hedgerows, or culverts, that may reduce pre-construction stormwater runoff rates and volumes.

4. In computing stormwater runoff from all design storms, the design engineer shall consider the relative stormwater runoff rates and/or volumes of pervious and impervious surfaces separately to accurately compute the rates and volume of stormwater runoff from the site. To calculate runoff from unconnected impervious cover, urban impervious area modifications as described in the NRCS Technical Release 55 – Urban Hydrology for Small Watersheds and other methods may be employed.

5. If the invert of the outlet structure of a stormwater management measure is below the flood hazard design flood elevation as defined at N.J.A.C. 7:13, the design engineer shall take into account the effects of tailwater in the design of structural stormwater management measures.

B. Groundwater recharge may be calculated in accordance with the following:

9-10 STORMWATER REGULATIONS AND STORMWATER CONTROL

from the New Jersey Stormwater Best Management Practices Manual; at http://www.state.nj.us/dep/njgs/; or at New Jersey Geological Survey, 29 Arctic Parkway, P.O. Box 427 Trenton, New Jersey 08625-0427; (609) 984-6587.

9-10.9 Standards for Structural Stormwater Management Measures

A. Standards for structural stormwater management measures are as follows:

1. Structural stormwater management measures shall be designed to take into account the existing site conditions, including, for example, environmentally critical areas, wetlands; flood-prone areas; slopes; depth to seasonal high water table; soil type, permeability and texture; drainage area and drainage patterns; and the presence of solution-prone carbonate rocks (limestone).

2. Structural stormwater management measures shall be designed to minimize maintenance, facilitate maintenance and repairs, and ensure proper functioning. Trash racks shall be installed at the intake to the outlet structure as appropriate, and shall have parallel bars with one-inch (1") spacing between the bars to the elevation of the water quality design storm. For elevations higher than the water quality design storm, the parallel bars at the outlet structure shall be spaced no greater than one-third (1/3) the width of the diameter of the orifice or one-third (1/3) the width of the weir, with a minimum spacing between bars of one-inch and a maximum spacing between bars of six inches. In addition, the design of trash racks must comply with the requirements of Section 9-10.11.D.

3. Structural stormwater management measures shall be designed, constructed, and installed to be strong, durable, and corrosion resistant. Measures that are consistent with the relevant portions of the Residential Site Improvement Standards at N.J.A.C. 5:21-7.3, 7.4, and 7.5 shall be deemed to meet this requirement.

4. At the intake to the outlet from the stormwater management basin, the orifice size shall be a minimum of two and one-half inches in diameter.

5. Stormwater management basins shall be designed to meet the minimum safety standards for stormwater management basins at Section 9-10.11.

B. Stormwater management measure guidelines are available in the New Jersey Stormwater Best Management Practices Manual. Other stormwater management measures may be utilized provided the design engineer demonstrates that the proposed measure and its design will accomplish the required water quantity, groundwater recharge and water quality design and performance standards established by Section 9-10.7 of this ordinance.

C. Manufactured treatment devices may be used to meet the requirements of Section 9-10.7 of this ordinance, provided the pollutant removal rates are verified by the New Jersey Corporation for Advanced Technology and certified by the Department.
9-10.10 Sources for Technical Guidance

A. Technical guidance for stormwater management measures can be found in the documents listed at 1 and 2 below, which are available from Maps and Publications, New Jersey Department of Environmental Protection, 428 East State Street, P.O. Box 420, Trenton, New Jersey, 08625; telephone (609) 777-1038.

1. Guidelines for stormwater management measures are contained in the New Jersey Stormwater Best Management Practices Manual, as amended. Information is provided on stormwater management measures such as: bioretention systems, constructed stormwater wetlands, dry wells, extended detention basins, infiltration structures, manufactured treatment devices, pervious paving, sand filters, vegetative filter strips, and wet ponds.

B. Additional technical guidance for stormwater management measures can be obtained from the following:

1. The "Standards for Soil Erosion and Sediment Control in New Jersey" promulgated by the State Soil Conservation Committee and incorporated into N.J.A.C. 2:90. Copies of these standards may be obtained by contacting the State Soil Conservation Committee or any of the Soil Conservation Districts listed in N.J.A.C. 2:90-1.3(a)4. The location, address, and telephone number of each Soil Conservation District may be obtained from the State Soil Conservation Committee, P.O. Box 330, Trenton, New Jersey 08625; (609) 292-5540;

2. The Rutgers Cooperative Extension Service, 732-932-9306; and

3. The Soil Conservation Districts listed in N.J.A.C. 2:90-1.3(a)4. The location, address, and telephone number of each Soil Conservation District may be obtained from the State Soil Conservation Committee, P.O. Box 330, Trenton, New Jersey, 08625, (609) 292-5540.

9-10.11 Safety Standards for Stormwater Management Basins

A. This section sets forth requirements to protect public safety through the proper design and operation of stormwater management basins. This section applies to any new stormwater management basin.

B. Requirements for Trash Racks, Overflow Grates and Escape Provisions

1. A trash rack is a device designed to catch trash and debris and prevent the clogging of outlet structures. Trash racks shall be installed at the intake to the outlet from the stormwater management basin to ensure proper functioning of the basin outlets in accordance with the following:
a. The trash rack shall have parallel bars, with no greater than six inch spacing between the bars.

b. The trash rack shall be designed so as not to adversely affect the hydraulic performance of the outlet pipe or structure.

c. The average velocity of flow through a clean trash rack is not to exceed 2.5 feet per second under the full range of stage and discharge. Velocity is to be computed on the basis of the net area of opening through the rack.

d. The trash rack shall be constructed and installed to be rigid, durable, and corrosion resistant, and shall be designed to withstand a perpendicular live loading of 300 lbs/ft sq.

2. An overflow grate is designed to prevent obstruction of the overflow structure. If an outlet structure has an overflow grate, such grate shall meet the following requirements:

a. The overflow grate shall be secured to the outlet structure but removable for emergencies and maintenance.

b. The overflow grate spacing shall be no less than two inches across the smallest dimension.

c. The overflow grate shall be constructed and installed to be rigid, durable, and corrosion resistant, and shall be designed to withstand a perpendicular live loading of 300 lbs./ft sq.

3. For purposes of this paragraph 3, escape provisions means the permanent installation of ladders, steps, rungs, or other features that provide easily accessible means of egress from stormwater management basins. Stormwater management basins shall include escape provisions as follows:

a. If a stormwater management basin has an outlet structure, escape provisions shall be incorporated in or on the structure. With the prior approval of the reviewing agency identified in Section 9-10.11.C a free-standing outlet structure may be exempted from this requirement.

b. Safety ledges shall be constructed on the slopes of all new stormwater management basins having a permanent pool of water deeper than two and one-half feet. Such safety ledges shall be comprised of two steps. Each step shall be four to six feet in width. One step shall be located approximately two and one-half feet below the permanent water surface, and the second step shall be located one to one and one-half feet above the permanent water surface. See subsection D below for an illustration of safety ledges in a stormwater management basin.

c. In new stormwater management basins, the maximum interior slope for an earthen dam, embankment, or berm shall not be steeper than 3 horizontal to 1 vertical.
C. Variance or Exemption from Safety Standards

1. A variance or exemption from the safety standards for stormwater management basins may be granted only upon a written finding by the appropriate reviewing agency (municipality, county or Department) that the variance or exemption will not constitute a threat to public safety.

D. Illustration of Safety Ledges in a New Stormwater Management Basin

![Diagram of Safety Ledges](image)

Depicted is an elevational view.

- 12" TO 18" ABOVE WATER SURFACE
- PERMANENT WATER LEVEL
- 30" BELOW WATER SURFACE
- SLOPE TO BE STABLE
- 4' to 6' WIDE, SLOPE GENTLY FOR DRAINAGE
- 4' TO 6' WIDE, SLOPE GENTLY TOWARD THE POOL, FOR DRAINAGE

NOTE: NOT DRAWN TO SCALE

NOTE: FOR BASINS WITH PERMANENT POOL OF WATER ONLY

9-10.12 Requirements for a Site Development Stormwater Plan

A. Submission of Site Development Stormwater Plan

1. Whenever an applicant seeks municipal approval of a development subject to this ordinance, the applicant shall submit all of the required components of the Checklist for the Site Development Stormwater Plan at subsection C below as part of the submission of the applicant's application for subdivision or site plan approval.

2. The applicant shall demonstrate that the project meets the standards set forth in this ordinance.
3. The applicant shall submit four (4) copies of the materials listed in the checklist for site development stormwater plans in accordance with subsection C below.

B. Site Development Stormwater Plan Approval

The applicant's Site Development project shall be reviewed as a part of the subdivision or site plan review process by the municipal board or official from whom municipal approval is sought. That municipal board or official shall consult the engineer retained by the Planning and/or Zoning Board (as appropriate) to determine if all of the checklist requirements have been satisfied and to determine if the project meets the standards set forth in this ordinance.

C. Checklist Requirements

The following information shall be required:

1. Topographic Base Map

 The reviewing engineer may require upstream tributary drainage system information as necessary. It is recommended that the topographic base map of the site be submitted which extends a minimum of 200 feet beyond the limits of the proposed development, at a scale of 1"=200' or greater, showing 2-foot contour intervals. The map as appropriate may indicate the following: existing surface water drainage, shorelines, steep slopes, soils, erodible soils, perennial or intermittent streams that drain into or upstream of the Category One waters, wetlands and flood plains along with their appropriate buffer strips, marshlands and other wetlands, pervious or vegetative surfaces, existing man-made structures, roads, bearing and distances of property lines, and significant natural and manmade features not otherwise shown.

2. Environmental Site Analysis

 A written and graphic description of the natural and man-made features of the site and its environs. This description should include a discussion of soil conditions, slopes, wetlands, waterways and vegetation on the site. Particular attention should be given to unique, unusual, or environmentally sensitive features and to those that provide particular opportunities or constraints for development.

3. Project Description and Site Plan(s)

 A map (or maps) at the scale of the topographical base map indicating the location of existing and proposed buildings, roads, parking areas, utilities, structural facilities for stormwater management and sediment control, and other permanent structures. The map(s) shall also clearly show areas where alterations occur in the natural terrain and cover, including lawns and other landscaping, and seasonal high ground water elevations. A written description of the site plan and justification of proposed changes in natural conditions may also be provided.
4. Land Use Planning and Source Control Plan

This plan shall provide a demonstration of how the goals and standards of Sections 9-10.6 through 9-10.9 are being met. The focus of this plan shall be to describe how the site is being developed to meet the objective of controlling groundwater recharge, stormwater quality and stormwater quantity problems at the source by land management and source controls whenever possible.

5. Stormwater Management Facilities Map

The following information, illustrated on a map of the same scale as the topographic base map, shall be included:

a. Total area to be paved or built upon, proposed surface contours, land area to be occupied by the stormwater management facilities and the type of vegetation thereon, and details of the proposed plan to control and dispose of stormwater.

b. Details of all stormwater management facility designs, during and after construction, including discharge provisions, discharge capacity for each outlet at different levels of detention and emergency spillway provisions with maximum discharge capacity of each spillway.

6. Calculations

a. Comprehensive hydrologic and hydraulic design calculations for the pre-development and post-development conditions for the design storms specified in Section 4 of this ordinance.

b. When the proposed stormwater management control measures (e.g., infiltration basins) depends on the hydrologic properties of soils, then a soils report shall be submitted. The soils report shall be based on onsite boring logs or soil pit profiles. The number and location of required soil borings or soil pits shall be determined based on what is needed to determine the suitability and distribution of soils present at the location of the control measure.

7. Maintenance and Repair Plan

The design and planning of the stormwater management facility shall meet the maintenance requirements of Section 10.

8. Waiver from Submission Requirements

The municipal official or board reviewing an application under this ordinance may, in consultation with the municipal engineer, waive submission of any of the requirements in subsections C.1 through C.6 above in this section when it can be demonstrated that the information requested is impossible to obtain or it would create a hardship on the applicant to obtain and its absence will not materially affect the review process.
9-10.13 Maintenance and Repair

A. Applicability

1. Projects subject to review as in Section 9-10.3 of this ordinance shall comply with the requirements of subsections B and C below.

B. General Maintenance

1. The design engineer shall prepare a maintenance plan for the stormwater management measures incorporated into the design of a major development.

2. The maintenance plan shall contain specific preventative maintenance tasks and schedules; cost estimates, including estimated cost of sediment, debris, or trash removal; and the name, address, and telephone number of the person or persons responsible for preventative and corrective maintenance (including replacement). Maintenance guidelines for stormwater management measures are available in the New Jersey Stormwater Best Management Practices Manual. If the maintenance plan identifies a person other than the developer (for example, a public agency or homeowners’ association) as having the responsibility for maintenance, the plan shall include documentation of such person’s agreement to assume this responsibility, or of the developer’s obligation to dedicate a stormwater management facility to such person under an applicable ordinance or regulation.

3. Responsibility for maintenance shall not be assigned or transferred to the owner or tenant of an individual property in a residential or commercial development or project, unless such owner or tenant owns or leases the entire residential development or project.

4. If the person responsible for maintenance identified under subsection B.2 above is not a public agency, the maintenance plan and any future revisions based on subsection B.7 below shall be recorded upon the deed of record for each property on which the maintenance described in the maintenance plan must be undertaken.

5. Preventative and corrective maintenance shall be performed to maintain the function of the stormwater management measure, including repairs or replacement to the structure; removal of sediment, debris, or trash; restoration of eroded areas; snow and ice removal; fence repair or replacement; restoration of vegetation; and repair or replacement of nonvegetated linings.

6. The person responsible for maintenance identified under subsection B.2 above shall maintain a detailed log of all preventative and corrective maintenance for the structural stormwater management measures incorporated into the design of the development, including a record of all inspections and copies of all maintenance-related work orders.

7. The person responsible for maintenance identified under subsection B.2 above shall evaluate the effectiveness of the maintenance plan at least once per year and adjust the plan and the deed as needed. The plan and any adjustments shall be subject to review and approval by the Municipal Engineer.
8. The person responsible for maintenance identified under subsection B.2 above shall retain and make available, upon request by any public entity with administrative, health, environmental, or safety authority over the site, the maintenance plan and the documentation required by subsections B.6 and B.7 above, within 15 days of the request.

9. The requirements of subsections B.3 and B.4 do not apply to stormwater management facilities that are dedicated to and accepted by the municipality or another governmental agency.

10. In the event that the stormwater management facility becomes a danger to public safety or public health, or if it is in need of maintenance or repair, the municipality shall so notify the responsible person in writing. Upon receipt of that notice, the responsible person shall have fourteen (14) days to effect maintenance and repair of the facility in a manner that is approved by the municipal engineer or his designee. The municipality, in its discretion, may extend the time allowed for effecting maintenance and repair for good cause. If the responsible person fails or refuses to perform such maintenance and repair, the municipality or County may immediately proceed to do so and shall bill the cost thereof to the responsible person.

C. Nothing in this section shall preclude the municipality in which the major development is located from requiring the posting of a performance or maintenance guarantee in accordance with N.J.S.A. 40:55D-53.

9-10.14 Penalties

Any person(s) who erects, constructs, alters, repairs, converts, maintains, or uses any building, structure or land in violation of this ordinance shall be subject to general penalty provisions, of Chapter 3 of the Code of the Borough of Harvey Cedars and a fine not to exceed $1,250.

9-10.15 Fees

The following fees shall apply to this chapter:

1. Subsurface Infiltration System Review and Inspection Fee $400.00

Reference is made to the following chapters and sections where additional fees may apply: Chapter 14 Land Use Procedures, Chapter 15 Site Plan Review, and Chapter 16 Land Subdivision.

(Ord. No. 2017-23 § 1)
9.10.16 **Section 15: Waivers**

A. A waiver from strict compliance with the requirements of Sections 9-10.7.F and G may be issued in those cases where an applicant has demonstrated the inability or impracticality of strict compliance, other than projects addressed under Section 14, with the stormwater management requirements set forth in NJAC 7:8, in an adopted regional stormwater management plan, or in a local ordinance which is as strict as NJAC 7:8. A waiver from strict compliance for such projects can only be obtained if the applicant agrees to undertake a suitable mitigation measure identified in the mitigation section of the municipality’s Stormwater Management Plan. In such cases, the Applicant must submit a mitigation plan detailing how the project’s failure to strictly comply will be compensated. In cases where a waiver is granted, an applicant should provide mitigation, if possible and/or practical within the same HUC-14 watershed within which the subject project is proposed, or contribute funding toward a regional stormwater control project, or provide for equivalent treatment at an alternate location, or other equivalent water quality benefit, in lieu of implementing the required stormwater control measures on their specific site.

(Ord. No. 2006-13 § 2)

Any project considered “Major Development” does not need a waiver if alternative design standards that are at least as protective as would be achieved through NJAC 7:8, are applicable under a regional stormwater plan or a water quality management plan. The Borough may also grant a variance or exemption from the design and performance standards for stormwater management measures set forth in the plan and ordinance, provided the plan includes a mitigation plan and the Borough submits a written report to the county review agency describing the variance or exemption and required mitigation. (Ord. No. 2007-03 § 2)

B. Any project that is defined as “Minor Development” is exempt from strict compliance with this article and does not need a waiver. However, minor development which includes all residential construction on individual lots shall provide stormwater control as follows:

1. Install leaders and gutters on all roof areas.
2. Install one linear foot of twelve-inch perforated drainage pipe per one hundred square foot of building coverage in a stone trench and connect same to the roof leaders as shown on Detail A, entitled “Subsurface Infiltration System”.
3. In order to insure proper drainage and to avoid impacts to neighboring properties, all residential construction is required to maintain proper drainage. In lots that require fill, a drainage system of perforated piping shall be installed to provide positive drainage and discharge to the municipal street. The developer of any lot may install a drainage system on one or both sides of the structure and all roof leaders shall be tied into the system for positive discharge at the roadway. Roof leaders on lagoon or bayfront lots may be discharged directly to the lagoon or bay via an individualized piping system. Detail B, a typical layout detail is provided at the end of this Chapter. (Ord. No. 2017-03 § 3)
4. All retaining walls shall be installed with an impermeable barrier to avoid seepage of water through the walls.
5. A plot plan showing all grading and drainage shall be submitted for review.
6. Retaining walls and fill must be installed prior to construction.

(Ord. No. 2017-23 § 2)
9-11 PRIVATE STORM DRAIN INLET RETROFITTING

9-11.1 Purpose
An ordinance requiring the retrofitting of existing storm drain inlets which are in direct contact with repaving, repairing, reconstruction, or resurfacing or alterations of facilities on private property, to prevent the discharge of solids and floatables (such as plastic bottles, cans, food wrappers and other litter) to the municipal separate storm sewer system(s) operated by the Borough of Harvey Cedars so as to protect public health, safety and welfare, and to prescribe penalties for the failure to comply.

9-11.2 Prohibited Conduct

No person in control of private property (except a residential lot with one single family house) shall authorize the repaving, repairing (excluding the repair of individual potholes), resurfacing (including top coating or chip sealing with asphalt emulsion or a thin base of hot bitumen), reconstructing or altering any surface that is in direct contact with an existing storm drain inlet on that property unless the storm drain inlet either:
1. Already meets the design standard below to control passage of solid and floatable materials; or
2. Is retrofitted or replaced to meet the standard below prior to the completion of the project.

9-11.3 Design Standard

Storm drain inlets identified in Section 9-11.2 above shall comply with the following standard to control passage of solid and floatable materials through storm drain inlets. For purposes of this paragraph, “solid and floatable materials” means sediment, debris, trash, and other floating, suspended, or settleable solids. For exemptions to this standard see below.

1. Design engineers shall use either of the following grates whenever they use a grate in pavement or another ground surface to collect stormwater from that surface into a storm drain or surface water body under that grate:
 a. The New Jersey Department of Transportation (NJDOT) bicycle safe grate, which is described in Chapter 2.4 of the NJDOT Bicycle Compatible Roadways and Bikeways Planning and Design Guidelines (April 1996); or
 b. A different grate, if each individual clear space in that grate has an area of no more than (7.0) square inches, or is no greater than 0.5 inches across the smallest dimension.

Examples of grates subject to this standard include grates in grate inlets, the grate portion (non-curb-opening portion) of combination inlets, grates on storm sewer manholes, ditch grates, trench grates, and grates of spacer bars in slotted drains. Examples of ground surfaces include surfaces of roads (including bridges), driveways, parking areas, bikeways, plazas, sidewalks, lawns, fields, open channels, and stormwater basin floors.
2. Whenever design engineers use a curb-opening inlet, the clear space in that curb opening (or each individual clear space, if the curb opening has two or more clear spaces) shall have an area of no more than seven (7.0) square inches, or be no greater than two (2.0) inches across the smallest dimension.

3. Exemptions. This standard does not apply:
 a. Where the municipal engineer agrees that this standard would cause inadequate hydraulic performance that could not practicably be overcome by using additional or larger storm drain inlets that meet these standards;
 b. Where flows are conveyed through any device (e.g. end of pipe netting facility, manufactured treatment device, or a catch basin hood) that is designed, at a minimum, to prevent delivery of all solid and floatable materials that could not pass through one of the following:
 i. A rectangular space four and five-eighths inches long and one and one-half inches wide (this option does not apply for outfall netting facilities); or
 ii. A bar screen having a bar spacing of 0.5 inches.
 c. Where flows are conveyed through a trash rack that has parallel bars with one-inch (1”) spacing between the bars; or
 d. Where the New Jersey Department of Environmental Protection determines, pursuant to the New Jersey Register of Historic Places Rules at NJAC 7:4-7.2(c), that action to meet this standard is an undertaking that constitutes an encroachment of will damage or destroy the New Jersey Register listed historic property.

9-11.4 Penalties

 Each person violating any of the provisions of this section shall, upon conviction thereof, be liable to the penalty stated in Chapter III, section 3-9.

(Ord. No. 2010-17 § 5)
9-12 REFUSE CONTAINERS / DUMPSTERS

9-12.1 Purpose
An ordinance requiring dumpsters and other refuse containers that are outdoors or exposed to stormwater to be covered at all times and prohibits the spilling, dumping, leaking, or otherwise discharge of liquids, semi-liquids or solids from the containers to the municipal separate storm sewer system(s) operated by the Borough of Harvey Cedars and/or the waters of the State so as to protect public health, safety and welfare, and to prescribe penalties for the failure to comply.

9-12.2 Prohibited Conduct
Any person who controls, whether owned, leased, or operated a refuse container or dumpster must ensure that such container or dumpster is covered at all times and shall prevent refuse from spilling out or overflowing.

Any person who owns, leases, or otherwise uses a refuse container or dumpster must ensure that such container or dumpster does not leak or otherwise discharge liquids, semi-liquids or solids to the municipal separate storm sewer system(s) operated by the Borough of Harvey Cedars.

Refer to section 3-1.20 for additional litter container regulations.

9-12.3 Exceptions to Prohibition.
 a. Litter receptacles (other than dumpsters or individual homeowner containers)
 b. Refuse containers at facilities authorized to discharge stormwater under a valid NJPDES permit
 c. Large bulky items (e.g. furniture, bound carpet and padding, white goods placed curbside for pickup)

9-12.4 Penalties
Each person violating any of the provisions of this section shall, upon conviction thereof, be liable to the penalty stated in Chapter III, section 3-9.

(Ord. No. 2010-17 § 5)
DETAIL "A" – SUBSURFACE INFILTRATION SYSTEM

1. The leader shall extend into the trench a min. of 2 ft. from the downslope. The trench shall be a min. of 5 ft. long.

2. Roof leaders to be connected to the trench section.

3. All roof leaders to be connected to the trench section.

Note: The trench shall vary in depth, depending on the slope and soil conditions.

Trench Section:
- Wrap top and sides in filter fabric (max. 12")
- 3/4" dia. perforated pipe (2")
- 1" filter fabric

N.T.S.
DETAIL “B” – TYPICAL LOT GRADING WITH 20” FILL
Scale: 1” = 2.0’